字号:TTT

基于区块链的智能组件:一种分布式人工智能研究新范式


引用文本: 袁勇, 欧阳丽炜, 王晓, 王飞跃, “基于区块链的智能组件:一种分布式人工智能研究新范式”,数据与计算发展前沿,2021, Vol. 3, No. 1, pp. 1-14.

Citation: Yuan Yong, Ouyang Liwei, Wang Xiao, Wang Fei-Yue, “Blockchain-based Intelligent-ware: A Novel Paradigm for Distributed Artificial Intelligence Research”, Frontiers of Data & Computing, 2021, Vol. 3, No. 1, pp. 1-14.

基于区块链的智能组件:一种分布式人工智能研究新范式

袁勇, 欧阳丽炜, 王晓, 王飞跃

摘 要:【目的】促进区块链与新一代人工智能技术的融合发展,利用人工智能的学习、推理和决策能力解决区块链面临的关键问题与挑战,已经成为区块链技术发展的重要突破口。【方法】致力于研究区块链与人工智能相结合的新范式,将目前相对中心化的人工智能算法嵌入到去中心化的区块链系统,使得二者共融、增强。【结果】提出了区块链赋能的智能组件概念与方法体系,为区块链性能、去中心化治理和安全方面的联合优化提出了解决方案,同时为分布式人工智能研究提供了新范式和新思路。【结论】智能组件有助于构建高效能、高可控、高安全、具有智能决策能力的新型区块链系统,形成“区块链智能”。

关键词: 智能组件;区块链;智能合约;分布式人工智能

Blockchain-based Intelligent-ware: A Novel Paradigm for

Distributed Artificial Intelligence Research

Yuan Yong, Ouyang Liwei, Wang Xiao, Wang Fei-Yue

Abstract: [Objective] Integrating blockchain and the next-generation artificial intelligence (AI), and solving key issues and challenges in blockchain with the learning, reasoning and decision-making capabilities in AI, has become an important breakthrough point for the development of blockchain. [Methods] In this paper, we aimed to study the novel paradigm of blockchain + AI, integrating and enhancing both areas via embedding the central AI algorithms into the decentralized blockchain systems. [Results] We proposed the concept and method framework for the novel blockchain-enabled intelligent-ware, which offers potential solutions to the joint optimization for the performance, decentralized governance and security issues of blockchain, and also offers a new paradigm for the decentralized AI. [Conclusions] Intelligent-ware can help construct the next-generation blockchain systems with high performance, high controllability, high security and intelligent decision-making ability, thus generating the blockchain intelligence.

Keywords: intelligent-ware; blockchain; smart contract; distributed artificial intelligence

引言

区块链是新一代信息技术的典型代表,是我国科技自主创新的重要突破口。2019年10月,中央政治局第18次集体学习聚焦区块链技术,强调我国区块链技术应“走在理论最前沿、占据创新制高点、取得产业新优势”。国际上如IBM、摩根大通、微软,国内如百度、腾讯、阿里巴巴、京东等领军企业都相继布局和大力发展区块链技术。显然,区块链已经成为迫切需要技术攻关的前沿方向[建议斟酌下,这样表达排斥了其它代表的新一代信息技术的方向。区块链是复合型技术。

然而,就应用现状而言,区块链的真正落地尚面临着诸多问题和挑战,其中业界广泛关注性能、去中心化治理和安全性三方面的问题。首先,主流区块链(特别是公有链系统)存在明显的性能缺陷,主要体现在挖矿过程、交易打包和区块广播等过程的高延时性、区块大小限制下交易的低通量性、以及挖矿过程的大量算力需求所导致的高能耗;其次是由于去中心化导致的可控治理困难,主要体现在去中心化区块链系统中存在的多种共识机制无法自适应调度、区块链实体层面的策略性行为可能会威胁区块链系统的去中心化治理、以及智能合约因缺乏智能性而导致的区块链实际应用受限;最后是安全风险高,目前区块链系统面临着多种安全攻击,严重缺乏有效的系统级安全评估手段、风险预警技术和决策支持能力、以及灾后修复技术。

这三个问题在深层机理层面相互制约、彼此限制,被业界统称为区块链领域的“不可能三角”问题(即难以实现“性能—去中心化治理—安全”的联合优化),一定程度上制约了区块链技术的应用拓展,成为区块链发展亟需解决的“卡脖子”问题。虽然目前区块链已在金融、能源、数字货币等领域取得了一定的应用进展,然而以上技术缺陷已俨然成为阻碍区块链技术实现更大规模应用的瓶颈,难以用传统的技术方法来解决。因此,亟需将新一代人工智能技术引入区块链系统的治理过程,从整体层面对区块链的性能、去中心化治理和安全实现多目标协同优化,同时探索和拓展该多目标优化问题的帕累托边界,辅助解决区块链在实际应用中面临的各种困境和难题。

新一代人工智能具有强大的数据解析、算法学习和决策推理能力,将其引入区块链系统有望为解决上述问题提供重要的理论支撑和技术保障。然而,理论研究方面,该领域研究尚处于起步阶段,现有研究相对匮乏,亟需针对区块链+人工智能的体系架构、基础理论和关键技术等方面的系统性创新研究。应用实践方面,国内外已经零星出现若干创业项目,均获得产业界的极大关注;然而这些项目均处于应用探索初期,亟需基础理论和方法的指导和支持。综上,如何利用人工智能为现阶段的区块链赋予智能特性,目前还未有显著研究进展和具体措施。因此,本文致力于提出区块链与人工智能相结合的新思路,试图将目前相对中心化的人工智能算法嵌入到去中心化的区块链系统,使得二者共融、增强,从而构建高效能、高可控、高安全、具有智能决策能力的新型区块链系统,形成“区块链智能”。

具体来说,本文将创新性地提出区块链赋能的“智能组件”概念与方法体系,其基本思路是采集和解析外生环境数据和区块链内生数据、通过人工智能算法实现深度解析和理解,规约成针对特定业务场景的领域知识,并将产生的知识和规封装固化到智能合约中,形成不依赖第三方、自主和自治执行的智能组件;在此基础上,通过对面向不同任务和场景的智能组件进行灵活配置与计算实验,针对各种兼具不确定性、多样性和复杂性的场景和需求,自适应地产生和执行灵捷、聚焦和收敛的智能决策。这种区块链赋能的智能组件思路不仅有助于区块链系统性能、去中心化治理和安全等方面的联合优化、解决区块链系统面临的“不可能三角”问题,同时有望为分布式人工智能研究提供新范式和新思路。

本文组织结构如下:第1节概述区块链和智能合约的背景知识与现状;第2节提出智能组件的基本概念、学术思路和研究内容;第3节探讨基于智能组件的分布式人工智能研究范式;第4节总结智能组件研究中的关键问题和挑战;第5节给出智能组件的初步应用案例;第6节总结全文。

1 区块链与智能合约概述

区块链技术起源于2008年由化名为“中本聪”(Satoshi Nakamoto)的学者发表的奠基性论文《比特币:一种点对点的电子现金系统》,是一种将数据区块按照时间顺序组合成的链式结构,是去中心化系统中由各节点共享和共同维护的分布式数据账本。具体来说,分布式的区块链节点(矿工)由点对点(Peer to Peer, P2P)组网方式相互连通和交互,在经济激励机制驱动下贡献自身算力,根据数据验证机制及传播协议,验证、传播并存储一段时间内生成的有效交易数据;同时,区块链利用默克尔(Merkle)树、哈希算法、时间戳和密码学技术来生成数据区块,依据特定共识算法争取记账权,最终获得记账权的节点将其生成的数据区块连接到主链上并获得相应的经济激励,其余节点更新区块链账本。总体来说,区块链是一种基于众多现有技术的新兴技术组合,其核心要素共识机制、加密算法、激励机制的选择将直接决定区块链的运行机制和性能[2-4]。

智能合约的概念最早于1994年由美国计算机科学家尼克·萨博(Nick Szabo)提出并定义为“一套以数字形式指定的承诺,包括合约参与方可以在上面执行这些承诺的协议”。区块链上的智能合约可看作运行在分布式账本上的、预置规则、具有状态、条件响应的,可封装、验证、执行分布式节点复杂行为,完成信息交换、价值转移和资产管理的计算机程序。基于区块链的分布式架构和共识机制等,智能合约允许互不信任的用户在不需要任何第三方可信中介或权威机构的情况下完成交易和价值的点对点直接交换。同时,数字形式的智能合约可灵活地嵌入各种有形或无形的资产、交易和数据中,实现主动或被动的资产、信息管理与控制。

智能合约的生命周期根据其运行机制可概括为协商、开发、部署、运维、学习和自毁六个阶段。智能合约的基础架构如图1所示,模型自底向上由基础设施层、合约层、运维层、智能层、表现层和应用层组成[5-6]。智能合约极大地拓展了区块链的应用场景,使其不再局限于数字货币,而是有机会构建更为宏观的金融系统并应用到其它社会领域。

以太坊是世界上首个内置图灵完备编程语言并正式引入智能合约概念的公有区块链,是目前最流行、生态最完善、扩展最丰富的智能合约开发平台[7]。利用可执行任意复杂算法编码的以太坊虚拟机,用户可以按照自身意愿在以太坊平台上高效开发出多种智能合约以及建立在智能合约上的各类去中心化应用(Decentralized Applications, DApp)。除以太坊外,其它主流智能合约开发平台还包括 Hyperledger、EOS、NEO、Qtum等。

如果说区块链是具有普适性的去中心化技术架构,那么智能合约就相当于区块链的应用接口,帮助区块链的分布式架构植入不同场景。通过将核心的法律条文、商业逻辑和意向协定存储在智能合约中,可产生各种DApp,并逐步演化为去中心化自治组织(Decentralized Autonomous Organization, DAO)和去中心化自治企业(Decentralized Autonomous Corporations, DAC),进而集成和涌现为去中心化自治社会(Decentralized Autonomous Society, DAS)。这些表现形式有望改进传统的商业模式和社会生产关系,为可编程社会奠定基础[8-10]。

点击图片看原样大小图片
然而,作为一种新兴技术,智能合约仍存在诸多制约其发展的关键问题亟待优化和解决,例如安全问题、性能问题、隐私问题、法律问题等。针对这些问题,学界和工业界相继提出了一些初步解决方案。例如,针对智能合约安全问题,Luu提出一种符号化执行工具Oyente,用以检测以太坊智能合约中交易顺序依赖、时间戳依赖、可重入性、异常处理等潜在漏洞[11]。针对性能问题,Dickerson 提出一种智能合约并行执行框架,允许独立非冲突的合约同时运行,从而提高系统吞吐量、改善合约执行效能[12]。针对隐私问题,Kosb提出一种旨在保护用户隐私的智能合约开发框架Hawk[13]。总体来说,这些工具和方法大多停留在实验阶段,尚未在实际系统中取得大规模应用。

实际上,从发展角度来讲,智能合约面临的关键问题是缺乏智能性。当前的智能合约本质上是一系列的“If-Then”式情景—应对型规则,并不具备真正意义上面向动态和开放场景的智能性、自主性和适应性,只能按照静态的、预定义的规则被动执行。真正意义上的智能合约应当类似于人工智能研究中的智能体(Agent),不仅单个智能体具备自主和自治的感知、学习和推理功能,智能体与智能体之间还应具备交流、竞争与协作能力。已有一些学者尝试在智能合约中编码智能算法[14],但由于现阶段区块链网络为保证分布式一致性暂未纳入浮点数等复杂计算,以及以太坊等平台为激励全球算力的投入和合理分配使用权、避免系统因恶意程序走向失控而对程序执行所耗计算资源收费等因素,智能合约可编码算法的复杂度和求解精度都十分有限,而且容易导致高昂花费。随着以太坊等平台的进一步升级和程序执行费用下调,智能合约可望纳入更多复杂算法。

2 智能组件的概念与内涵

本节将提出智能组件的基本概念,探讨智能组件的学术思路,并给出智能组件的研究内容和实现途径。

2.1 基本概念

智能组件是一个新概念,最早由西安交通大学郑南宁院士于2018年科技部“科技创新2030-新一代人工智能重大专项”项目组的一次研讨会中提出。本文试图基于区块链和智能合约技术重新定义并给出实现智能组件的一种可行思路,这种思路在一定程度上受陆汝钤院士早年提出的“知件”概念启发[15]。

基于区块链的智能组件是一种融合人工智能算法的、可插拔的、去中心化自主执行的区块链系统核心功能模块。智能组件以运行于区块链上的智能合约为主要载体和表现形式,通过将人工智能技术优化后的算法、机制、策略等要素内嵌到智能合约中,由区块链系统所有参与者验证且分布式存储,即可形成针对特定业务场景和目标任务的标准化、规范化的智能组件。因此,智能合约发展的高级形式就是一系列不依赖第三方、自主自治的通用或专用智能组件,通过针对特定场景和计算任务自动选择和配置最优组件组合,就可以实现自适应学习与优化的智能区块链系统。

具体来说,一个区块链系统是由若干核心要素(数据结构、通信网络、共识算法、激励机制、加密算法等)构成的,不同的应用场景对区块链效能、去中心化程度和安全性的要求不同,不存在单一或者一劳永逸的要素配置方案。因此,有必要将区块链各核心要素以智能组件的方式封装起来,形成可插拔和灵捷适配的智能组件库。一方面,可以充分发挥运行于区块链上的智能组件在安全透明、激励驱动和去中心化方面的优势;另一方面,通过将深度学习、对抗学习和强化学习等新型人工智能算法融入到智能组件中,可以构建出高效能、甚至具备类人决策与判断能力的新型区块链系统。

智能组件将是分布式人工智能研究的新范式,是从早期面向对象的研究范式向面向智能体的研究范式演进过程中必须经历的过渡阶段。

2.2 学术思路

复杂系统研究中,还原论与整体论之争由来已久。前者认为复杂系统可以通过各个组成部分的行为及其相互作用来加以解释,因而试图通过分治法,将复杂的系统、事务和现象层层分解为各个简单的组成部分来加以研究;后者则认为将复杂系统还原分解为简单系统来孤立地加以分析是行不通的,因而提出视复杂系统为不可分割的整体,通过研究系统的输入和输出来理解高层的系统行为[16]。近年来,随着互联网和人工智能技术的发展,复杂系统的尺度、规模、数量等都已经呈现出前所未有的快速增长趋势,单纯地还原论或者整体论已经难以应对。因此,研究者们开始探索基于整体论与还原论相结合的新研究范式,例如王飞跃研究员提出的平行智能理论和ACP方法(Artificial Systems + Computational Experiments + Parallel Executions, 人工社会+计算实验+平行执行)就是“整体与还原相结合、定性与定量相结合、实际与人工相结合”的原创方法论[17-20]。

区块链系统已呈现出前所未有的复杂性、动态性、强耦合性和不可预测性。基于机理分析的传统方法难以定量、实时地对其行为、机制、策略、结构等要素进行建模、分析和评估。其直接后果就是,现有的区块链研究通常会陷入“还原分析”误区,即在假设其它要素不受影响的前提下,孤立地分析和优化特定的区块链组件和特性。以不可能三角问题为例,目前主流研究方法大多数都是在固定去中心化程度和安全性两个参数的基础上,孤立地通过高通量共识或者低耗能共识来优化区块链系统的性能。实际上,区块链各要素通常是相互制约和影响,“牵一发而动全身”,因而往往使得这种基于还原分析的解决方案失效[21-23]。

基于这样的基本判断,本文提出的智能组件概念有望将整体论和还原论融合起来,且兼具还原论的精确性和可解释性、以及整体论的简约性和有效性,是一种自底向上的研究范式,因而特别适合解决区块链和分布式人工智能这类复杂系统中由于微观行为、机制、策略和市场结构等要素的耦合互作用而在宏观系统层面涌现出的新型实践问题。

基于智能组件研究区块链系统的基本思路如图2所示:就现状而言,智能合约本质上大多都是静态的情景-响应规则和知识。因此,需要将新一代人工智能的新算法、新机制、新策略等封装到智能合约之中,形成可以动态配置的智能组件。这些智能组件就是针对特定业务的标准“能力库”,是“智能乐高”。在实际应用过程中,面向多样化的业务场景和任务需求,可以将场景和任务所需的能力进行分解,选择和调度使用合适的智能组件,进而通过最优化评估和筛选,实现智能组件的灵捷配置,“组装为”针对该场景和任务的智能Agent;这种思路的优势是可以将人工智能和区块链深度结合,将“智能”真正地嵌入到智能合约中,实现从Smart Contract到Smart Contractor的飞跃。

2.3 研究内容与实现途径

智能组件是区块链和人工智能研究的“合一体”。通过设计和评估基于区块链和智能合约的智能组件,一方面可以把人工智能的数据解析、知识推理和智能决策能力引入区块链系统,提升区块链系统的自适应学习与优化能力;另一方面也可以反过来利用区块链和智能合约技术解决人工智能算法的分布式协作和可信共享问题,为实现分布式人工智能奠定基础。

具体研究内容和方案为:



  • | 共2 页 :
  • 1
  • 2

还没有人评论



    还可输入500个字!
    ©2023 wailaike.net,all rights reserved
    0.03447413444519 is seconds